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ABSTRACT

IMSL Corporation sells a widely used and respected package of mathematical

and statistical computer subroutines written in the FORTRAN language. While

engineers, mathematicians and others who work regularly with computation are

familiar with the usefulness of the subroutines, most medical researchers are

neither aware of how the package could be useful to them nor knowledgeable

enough in FORTRAN to be able to write programs to call the routines. This

report gives examples which illustrate the applicability of IMSL subroutines

to research in physiology and biomechanics, and shows how to write simple

FORTRAN programs to define variables, read data from a file, call the IMSL

subroutines, and store or display results. Increased usage of IMSL software by

medical researchers can lead to more sophisticated and quantitative treatment

of data, and improve the overall quality of research.

lie

0

v

AllS, '*% U , ~ .. ~ , " S



INTRODUCTION

IMSL Incorporated sells a computer software product called the IMSL

Library which is a comprehensive collection of over 600 mathematical and

statistical FORTRAN subroutines. Since its creation in 1970 IMSL has become

internationally recognized by government, industry and academia as a

comprehensive, reliable resource in the field of numerical computing.

There are three sub-libraries within the IMSL software package:

MATH/LIBRARY - general applied mathematics

STAT/LIBRARY - statistics

SFUN/LIBRARY - special functions

To use any of the routines, a program must be written in FORTRAN to define

variables, read data from a computer file, call the IMSL subroutines, and

store or display results. The purpose of this report is to show how simple

FORTRAN programs can be written to access the IMSL library. Illustrative

examples are provided of applications to research in physiology and

biomechanics.

An alternative product to the IMSL library, called PROTRAN, produced by

the same company, may be of interest to some users. It allows those with no

programming knowledge to solve mathematical and statistical problems. The

system is basically a program which converts a set of relatively simple

commands provided by the user into FORTRAN computer code which calls the

appropriate IMSL subroutines. While the system may prove useful in an

environment where users are unfamiliar with programming, there are some

disadvantages to PROTRAN over the regular IMSL library. PROTRAN requires



considerable computer memory and computing time to pro-process the simplified

commands, and is therefore limited to larger computers. Unlike the standard

library, it will not operate on an IBM PC compatible machine, and IMSL has no

plans to develop a PROTRAN version for the PC in the near future. The standard

library has a more comprehensive set of subroutines and allows for more

control by the user. Also, while some knowledge of FORTRAN is useful for

purposes other than accessing IMSL, the PROTRAN syntax which the user must

learn only has application to the specific software package.

Cost of the IMSL library depends on what computer it is used with. The

price for the package on a VAX 780 is $3500, while for a PC it is $2050 with

access to the subroutine programming code or $1500 without access. A license

for the life of a VAX 780 computer is $17,000 with a $700 per year maintenance

and update charge. A site license for up to 100 copies of the program for PC

compatibles is $4000 each for the math, stat, and special function sub-

libraries, with a $1000 maintenance/update fee per sub-library. The cost for

PROTRAN is similar to that of the standard library.
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METHODOLOGY

Locating the appropriate subroutine I

The are 3 manuals each for the MATH/LIBRARY and the STAT/LIBRARY, and 1

for the SFUN/LIBRARY. At the end of each set of manuals are three indices of

the subroutines organized as follows:

1. KWIC index - by keyword

2. GAMS index - by major subject area

3. Alphabetical index

A sample page from each of the three indices can be found in Appendix 1.

Subroutine documentation

Each routine is described concisely, and at least one example of its use

is presented, with sample input and output. Algorithms are described, and

references provided. Appendix 2 contains documentation from the subroutines

used in the examples that follow.

Writing programs to call IMSL subroutines

The IMSL subroutines are written in FORTRAN, and are thus most easily

accessed by FORTRAN programs which call them. Some computer operating systems

allow the subroutines to be called by programs written in other languages. The

method of doing so is peculiar to each operating system.

Very simple FORTRAN programs can be written to read data from a file,

3



store the information in computer memory, call IMSL subroutines to perform

mathematical or statistical manipulations and write the results out to the

terminal screen or a file.

In most computers, creation of a program consists of entering a mode ;n

which text can be stored in a file, typing in the program steps, saving the

file, and instructing the computer to compile and link the program, which

converts the program to machine language that the computer can follow directly

and allocates the appropriate computer resources. The program is then ready to

run on a specified data file. A potential user must find out the instructions

needed on his particular computer to store, compile, link and run a FORTRAN

program.

Some FORTRAN fundamentals

Variables

Numbers are stored under variable names. Values can be assigned to a

variable directly in the program, from the terminal keyboard, or read from a

file.

Examples:

Assigning values to variables:

A=3.5

B-=14.7

Reading values from the terminal keyboard:

PRINT*,NENTER SUBJECTS HEIGHT IN METERS#

READ*, HEIGHT

4



Arrays

An array is a storage place for numbers. It can have one, two or more

dimensions. Each array must be declared at the beginning of the program.

Examples:

REAL A,VARS(8), VALUES(2,6)

A is a variable which can hold one numerical value at a time. VARS is a

one-dimensional array of length 8 that can store 8 numbers. The contents of

VARS might be:

10.2 13.5 14.8 34.7 89.4 67.2 78.2 36.8

VALUES is a two-dimensional array with 2 rows and 6 columns, that can

store 2 x 6 = 12 numbers. The contents of VALUES might be:

56.7 19.2 24.0 13.2 45.8 95.1

24.5 12.9 97.3 64.9 32.9 74.5

Individual elements within an array are specified by numbers within

parentheses following the array name. For example VARS(4) is the fourth

element of array VARS and has the value 34.7. VALUES(2,5) equals 32.9 since

the element in row two, column five of VALUES is specified.



I.

Format Statements

The format statement specifies how numbers are to be read from or written

to a file. The most commonly used format is the F type.

Example:

READ(1,20) A,B

20 FORMAT(F4.1,FS.2)

The first line assigns to variables A and B numbers it reads from file 1

according to the format statement on the line labelled 20, which specifies

that the two numbers will be read from the current line in the file. The first

number will consist of the first 4 characters from the current line in the

file, with a decimal point placed to the left of the single rightmost digit.

The second number will contain the next 5 characters from the current file

line, with a decimal point to the left of the rightmost 2 digits. When a file

is opened, the current file line is the first line in the file. After each

read statement, the current file line is incremented by one.

DO Loops

In a DO Loop, a set of instructions is used repeatedly for a specified

number of times.

Example:

DO 30 I=1,100

READ (1,20) KILOMETERS (I)

30 MILES (I) =KILOMETERS (I) *.6214

The 30 after the word 'DO' indicates the label of the last line of the

loop. I is the loop counter whose value is incremented by 1 at the end of each

6
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pass through the loop. This loop reads elements 1 through 100 of array

KILOMETERS from a file and assigns corresponding values to elements 1 through

100 of array MILES.

Integers and real numbers

Integers are whole numbers used for counting. They cannot have fractional

parts or decimal points. Examples of integers are 1, 3, 11, 506, and 10786.

Real numbers can express gradations between whole numbers and have decimal

points. Examples of real numbers are 13.5, 22., 1050.525 and 0.148.

It must be specified in FORTRAN which variable names refer to integers and

which to real numbers. The specification can be in two ways. The first

involves the first letter of the variable name. If the name starts with

I,J,K,L,M or N, the variable is taken to be an integer unless specified

otherwise. A variable name with any other starting letter is assumed to be a

real number unless specified otherwise. Variables specifically declared as

integers or real numbers override the starting letter convention.

Example of variable declaration:

INTEGER COUNT, FLAG

REAL KILOGRAMS, MINUTES

Thus the variables COUNT and FLAG are integers even though they start with

letters other than i,j,k,lm or n while KILOGRAMS and MINUTES are real numbers

even though they start with letters other than i through n.

;.%
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Calling subroutines

A subroutine is a program segment that can be called to perform a task. An

example of a subroutine call is:

CALL AREAC(R,AREA)

This particular subroutine calculates the area of a circle when a radius

is provided. Note that R is a variable that must be input, while AREA is

calculated by the subroutine.

Example:

RAD=5.

CALL AREAC(RADA)

PRINT*, A

The area of the circle of radius 5.0 will be printed. Note that names of

the arguments in the subroutine call don't matter, but order and type of the

arguments must be as specified. Actual numbers as opposed to variable names

may be used directly in the subroutine call if desired:

CALL AREAC(5.0,A)

Single and double precision

Each computer has a certain number of digits past the decimal point to

which a real number may be considered accurate. Smaller computers usually have

fewer digits of precision than do larger computers. Single precision is

adequate for most mathematical operations. Yet sometimes, particularly where a

8



lot of repetitive mathematical operations may magnify errors, the standard

degree of precision is not adequate. When it isn't, computers can be asked to

define real numbers in double precision, where twice the normal computer

memory is allocated per number stored, increasing accuracy considerably.

Personal computers, in which standard numerical precision is considerably less

than in mainframes, would more often require specification of double

precision.

An example of defining variables as double precision on the VAX 780

computer:

DOUBLE PRECISION HEIGHT, WEIGHT, VARS(100)

Most IMSL subroutines come in both single and double precision versions.

In such cases, on the description page of the subroutine, the single and

double precision titles are separated by a slash, with the double precision

name coming second and beginning with a *DO, as in:

LFSqH/DLFSqH

The following is an example of a call to a single precision subroutine:

call LFSQH( N, FAC, LDFAC, NCODA, B, X )

For double precision, real numbers must be defined as double precision at

the start of the program:

DOUBLE PRECISION FAC, LDFAC, B, X

9
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The double precision version of the subroutine is then called when needed:

CALL DLFSqH( N, FAC, LDFAC, NCODA, B, X )

* Note - only the real numbers, and not the integers, are defined as

double precision. Integers are used for counting, and have no decimal point

(e.g. 1, 12, 4055). By default in FORTRAN all variable names beginning with I,

J, K, L, M or N specify integers. Variable names beginning with any other

letter specify real numbers, which have decimal points (e.g. 20.25, .0034,

10000.), and can theoretically express infinite gradation between whole

numbers.

A
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An exarv-le of using mathematical subroutines in biomechanics

Figure I is a plot of torque produced throughout a range of human joint

motion on a dynamometer. Actual data points are indicated by the squares,

which are joined by straight lines. Figure 2 shows the area under each

straight line segment divided into a rectangle and a triangle. Using standard

formulas to get the areas of all the rectangles and triangles, the total area

under the curve adds up to 27,615 units.

A problem with the above approach is that joining the data points by

straight lines does not adequately represent the smooth gradation of human

torque capability over a range of joint motion. An IMSL subroutine can be used

to draw a smooth curve through the data points. The following program reads

the torque and joint angle corresponding to each point on the graph, calls

IMSL cubic spline smoothing subroutines and writes a set of points

corresponding to the smooth curve to a new file. Another IMSL subroutine

calculates the area under the curve.The raw and smoothed data points can be

plotted with any standard plotting package or by another IMSL routine using

line-printer graphics.

Figure 3 shows the raw data points, and the cubic spline derived smooth

curve plotted from the x and y coordinates in the output file. The automatic

spline subroutine used in the program chooses the degree of smoothing based on

statistical considerations. Note that the points are not necessarily

intersected by the smoothing curve. The area calculated under the smooth curve

is not the same as that calculated using rectangles and triangles. With other

data distribution shapes, the discrepancy would be even greater. The smooth

curve is more representative of most natural phenomena than is the series of

line segments.
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OWN- - -

It should be noted that program line numbers have been placed on the left

to facilitate discussion and are not to be typed in as part of the FORTRAN

program. A line-by-line discussion of the program follows the listing.

1 REAL X(13) ,Y(13) ,XNEW(121) ,YNEW(121) ,BREAK (13) ,CSCOEF(4, 13)

2 OPEN(1,FILE='POINTS.DAT),STATUS='OLD')

3 OPEN(2,FILE='SMOOTHED.DAT',STATUS='NEW')

4 DO 10 I=1,13

5 10 READ(1,20)X(I),Y(I)

6 20 FORMAT(2F76.2)

7 CALL CSSCV(13,X,Y,2,BREAKCSCOEF)

8 AREA=CSITG (60. ,180. ,12,BREAK, CSCOEF)

9 WRITE(2,30)AREA

10- 30 FORMAT('AREA ='.7O

11 ICOUNT=-0

12 DO 40 IANOLE=60, 180

13 ICOUNT=ICOUNT+1

14 XNEW(ICOUNT) =IANGLE

i5 YNEW(ICOUNT)=CSVAL(XNEW(I) ,12,BREAKCSCOEF)

16 40 WRITE(2,20)XNEW(I) ,YNEW(I)

17 CLOSE~i)

18 CLOSE(2)

*19 STOP

20 END

15



line explanation

1 Declaration is made of the arrays of real numbers. X and Y are

the abscissae and ordinates of the raw data points. Both are one

dimensional arrays dimensioned to length 13, since there are 13 raw

data points. XNEW and YNEW are arrays set up to hold points along a

smooth curve calculated with the cubic spline. Both are one

dimensional arrays of length 121 to hold abscissae and ordinates

corresponding to the range of joint motion between 60 and 180 degrees

at one degree increments. The arrays BREAK and CSCOEF are required by

the IMSL subroutines used in the program. Partial documentation from

the IMSL manual on cubic spline subroutines CSSCV, CSITG and CSVAL is

shown in figure 4. Complete documentation on all subroutines referred

to in this report can be found in appendix 2. It can be seen that

when the subroutine is called, there is a list of arguments in

parenthesis after the subroutine name.

2 All files from which data is read or to which data is written

must be opened. This open statement assigns number 1 to the pre-

existing or 'old' input file called POINTS.DAT. Any further reference

to the file in the program is by its number.

3 The 'new' file created by the program, which contains the

smoothed data points, is assigned number 2.

4-6 Lines 4 and 5 comprise a DO loop in which successive elements of

arrays X and Y are read from file 1 according to the format statement

on the line labelled 20.

7 The cubic spline subroutine is called. Values for the arguments

are assigned according to the instructions in figure 4. After the

16



CSSCV/DCSSCV (Single/Double precision)

Purpose: Compute a smooth cubic spline approximation to noisy
data using cross-validation to estimate the smoothing
parameter.

Usage: CALL CSSCV (NDATA, XDATA. FDATA, IEQUAL. BREAK, CSCOEF)

Arguments

NDATA - Number of data points. (Input)
NDATA must be at least 4.

XDATA - Array of length NDATA containing the data point
abscissas. (Input)
XDATA must be distinct.

FDATA - Array of length NDATA containing the data point
ordinates. (Input)

IEQUAL - A flag alerting the subroutine that the data is
equally spaced. (Input)
If NDATA is small (less than about 20) then IQUEAL should
be set to 2.
If IEQUAL is I then equal spacing is assumed and the

algorithm is more efficient; otherwise, unequal spacing
for the XDATA vector is assumed

BREAK - Array of length NDATA containing the breakpoints
for the piecewise cubic representation. (Output)

CSCOEF - Matrix of size 4 by NDATA containing the local
coefficients of the cubic pieces (Output)

CSITG/DCSITG (Single/Double precision)

Purpose: Evaluate the integral of a cubic spline.

Usage: CSITG(A. B. NINTV, BREAK, CSCOEF)

Arguments

A - Lower limit of integration (Input)

B - Upper limit of integration (Input)

NINTY - Number of polynomial pieces (Input)

BREAK - Array of length NINTV-1 containing the breakpoints

for the piecewise cubic representation, (Input)
BREAK must be strictly increasing

CSCOEF - Matrix of size 4 by NINTV I containing the local

coefficients of the cubic pieces. (Input)

CSITG - Value of the integral of the spline from A to B

(Output)

CSVAL/DCSVAL (Single/Double precision)

Purpose: Evaluate a cubic spline.

Usagei CSVAL(X, NINTV, BREAK. CSCOEF)

Arguments

X - Point at which the spline is to be evaluated.

(Input)
NINTV - Number of polynomial pieces. (Input)

BREAK - Array of length NINTV41 containing the breakpoints

for the piecewise cubic representation. (Input)

BREAK must be strictly increasing
CSCOEF - Matrix of size 4 by NINTV*1 containing the local

coefficients of the cubic pieces. (Input)

CSVAL - Value of the polynomial at X. (Output)

Figure 4 - Arguments for subroutines CSSCV, CSITG and CSVAL

17



subroutine call, arrays BREAK and CSCOEF have values specifying cubic

spline smoothing equations for each interval between the raw data

points.

8 Area is calculated by the subroutine CSITG. Arrays BREAK and

CSCOEF already contain values assigned to them by CSSCV on the

previous line.

9-10 The area is written to file 2 according to the format statement

on the line labelled 30.

11 The array element counter ICOUNT is initialized to 0.

12-16 This group of lines is a DO loop whose instructions are repeated

as the variable IANGLE assumes successive values between 60 and 180.

The elements of XNEW are assigned real number values corresponding to

the integer values of IANGLE. The elements of Y are assigned values

by subroutine CSVAL which calculates them using the smoothing

equation coefficients determined by subroutine CSSCV. Values of XNEW

and YNEW are written to file 2 according to the format indicated on

the line labelled 20.

17-18 Files 1 and 2 are closed.

19-20 Standard program ending.

Sometimes the Y values corresponding to abscissae between actual data

points are needed. Figure 5 compares Y values chosen by straight line and

cubic spline interpolation. It can be seen that there can be considerable

discrepancy between the two. Where it is known that a smooth curve is more

representative of a phenomenon, spline interpolation is preferable.

In some cases automatic smoothing may not be appropriate. An example would

be where the user would like the curve to pass through all the data points. In

18
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cases where the user would like to decide on the degree of smoothing,

subroutine CSSMH should be used instead of subroutine CSSCV. The arguments for

CSSMH are shown in figure 6. It can be seen that two new arguments are needed,

WEIGHT and SMPAR. In Figure 7, the smallest daslhes show the automatically

smoothed curve using CSSCV, the mid-size dashes show a less smooth curve which

stays close to all raw data points, and the large dashes show an excessively

smooth curve, for which a high value for SMPAR was specified. Modifications to

the program for user specified degree of smoothbing include declaration,

dimensioning and assigning values to array WEIGHT, reading a value for SMPAR,

and calling subroutine CSSMH instead of CSSCV. All 13 elements of WEIGHT were

arbitrarily assigned values of 25.

REAL WEIGHT (13)

DATA WEIGHT/13,25. /

PRINT*,'ENTER THE SMOOTHING FACTOR:'

READ., SMPAR

CALL CSSMH(13,X,Y,WEIGHT,SMPAR,BREAK, CSCOEF)

The rest of the program is as before. The 'PRINT*,' and 'READ*,'

instructions allow writing a question to the terminal screen and reading the

answer from the keyboard. A graphics package or routine can be used to

visually check if values chosen for WEIGHT and SMPAR provide the desired

degree of smoothing.

I

20
S

-. , ..,, '.., Up., 'U " -wa" -. "-"' U """, """w.,'', -W",.,U 'U .,=-' . .,-"' .. ". *...'.*. " " .. ""- U""" '•"" , --- " * " -"--,"-" -" -'." '



CSSMH/DCSSMH (Single/Double precision)

Purpose: Compute a smooth cubic spline approximation to
noisy data.

Usage: CALL CSSMH (NDATA, XDATA, FDATA. WEIGHT, SMPAR. BREAK,
CSCOEF)

Arguments

NDATA - Number of data points. (Input)
NDATA must be at least 2.

XDATA - Array of length NDATA containing the data point
abscissas. (Input)
XDATA must be distinct.

FDATA - Array of length NDATA containing the data point
ordinates. (Input)

WEIGHT - Array of length NDATA containing estimates of the
standard deviations of FDATA. (Input)
All elements of WEIGHT must be positive.

SMPAR - A nonnegative number which controls the smoothing.
(Input)
The spline function S returned is such that
the sum from I=1 to NDATA of

(S(XDATA(I))-FDATA(I))/WEIGHT(I) )**2
is less than or equal to SMPAR. It is recommended that
SMPAR lie in the confidence interval of this sum, i.e.,
NDATA-SQRT(2*NDATA) .LE. SMPAR LE. NDATA*SQRT(2*NDATA).

BREAK - Array of length NDATA containing the breakpoints
for the piecewise cubic representation. (Output)

CSCOEF - Matrix of size 4 by NDATA containing the local
coefficients of the cubic pieces. (Output)

1"

Figure 6 - Arguments for subroutine CSSHe

21

% %r.d- % % %



* - --..- .~LA

IF-

430-0 CU

4T

00

LUr

<D Si:t)m <D) LU) LA < A

-A v vU CV C

z 0c~w

*V %



An example of using statistical subroutines in physiology

Standard linear regression derives a straight line equation to fit data

such that the sum of squared deviations between the observed and predicted

data points is minimized. One problem with the procedure is that an outlying

point has a disproportionate amount of weight. A form of regression which is

less affected by aberrant data points is one in which the sum of absolute

values rather than the squared values of differences between observed and

predicted points is minimized. The BMDP and SPSS statistical packages do not

contain routines which perform such regression, while IMSL does. Figure 8

shows the arguments for subroutine RLINE and RLAV which respectively perform

least squares and least absolute values regression.

The points plotted in figure 9 were generated by a program using a

subroutine to produce uniform pseudo-random deviations about the solid

straight line of slope 1.0 and intercept 0.0. The dashed lines of best fit

were derived by calls to the subroutines using the least squares and least

absolute value regression methods. In figure 10, a high outlier was

substituted for the leftmost point of the random distribution about the Y=X

line serving to increase the intercept and decrease the slope of a fitted

line. It can be seen that the outlier had much greater effect on the slope and

intercept obtained by the least squares method than on the slope and intercept

determined by the least absolute values method, indicating that the latter

method may be preferable for fitting a straight line to some data

distributions. The following are essential parts of the program used to call

the regression subroutines. Line-by-line notation follows.

.



RLINE/DRLINE (Simgle/Doubl- Prton-)

purpoe Fit a line to a set of data potntsoiusing least squares

usage CALL SLIME (MOSS. ZhATA. )'DATA. DO. 21. STAT)

Argumnts

NOSS - Number of obeervations (Input)
EDATA - Vector Of length NOSS containing the X Values (Input)
YDATA - Vector Of length NODS co~niin the Y valu16s (Input)
so - LEtia~ted intercept of the fitted line (Output)
91 - Estimated slope of the fitted lIte. (Output)
FIAT - Vector of length 12 contaln"n the statistics d"scribed

below (Output)
I STAT(I
1 Neen of ZATA
2 Nma of YDATA
3 Sample variance of ZAA
4 Sample variance of YDATA
S correlation
6 Estimated standard error of SO
7 Estimated standard error of 31
a Degrees of freedom f or regression
g Sum of squares for regression
to Degres of freedom for error
ii Sum of squares for error
12 Number of Cay) points containing SaN

(not a number) as eitter the z or I value

RLAV/DRLAV (Single/Double precisionj

Purpose Fit a multiple linear regresion model using the lest
absolute values criterion.

Usage CALL SLAV (NODS. NCCL. X. LOX, INTCP. 11110. 11M0111.
IRSP. B. IANK. SAE. ITEA. NINISS)

Arguments

NOSS Number of observations (Input)
MCOL W umber of coluns in X (input)
X N OSS by MCCL matrix containing the data (Input)
LOX -Leading dimension of X exactly as specified in the

dimension statement in the calling program (Input)
IXTCTP -Intercept option. (Input)

INTCEP Action
0 Am intercept is not in the model
I An intercept is in the model

-M Independent variable option (input)
The asolute value of I1110 is the number of independent
(explanatory) variables The sign of 1111 specifies the

* following options
11110 Meaning

aLT 0 The data for the -IIND independent variables are
given in the first -11110 coluns of X

G-, 0 The data for the 11110 independent variables are
in the columns of X whose column numbers are
given by the elements of INDIMO

EO 0 There are no Independent variables
The regressor@ are the constant regressor (if INTCEP - 1)
and the Independent variables

1110111 lzIdex vector of length 11110 containing the column numbers
of X that are the independent (explanatory) variables
(Input, if 11110 is positive)
If11 IN is negative. MIND11 is not referenced and can be
a vector of length one

1IRSP -Column number IRSP of X contains the data for the
response (dependent) variable (Input)

9 Vector of length INTCEP - IABSMIND) containing a LAY
solution for the regression coefficients (Output)
If ItICEP - 1. 3(1 contains the intercept estimate
B(I11TCEP-I) contains the coefficient estimate for the
I-tb independent variable

IRAIIK R ank of the matrix of regressors (Output)
If MRANXl is lose than INTCEP - IABS(IIND). linear

d dependence of the regressors was declared
VSAE Sum of the absolute values of the errors (Output)

ITER Number of iterations performed (Output)
NPJ4ISS -Number of roes of data containing We.% (not a number'

vor the dependent or independent variables (Outp,'..t
If a row of data contains Nao for any of these variaties

the: ro e is excluded from the cooputatiaons
Figure 8 -Arguments for subroutine~s RLINE and RLAV
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1 REAL X(10) ,Y(10) ,STAT(12) ,ARREI(10,2) ,B(2)

2 CALL RLINE(10,XY,BOB1,STAT)

3 DO 15 I=1,10

4 ARREI(Il1)=X(I)

5 15 ARREI(I,2)=Y(I)

6 CALL RLAV(10,2,ARREI,10,1,-1,2,B,IRANKSAE,ITER,NRMISS)

line explanation

1 Arrays X and Y contain the data point abscissae and ordinates.

Array STAT holds statistical output from subroutine RLINE. Array

ARREI is a two dimensional array or matrix created by the program to

satisfy the input requirements of subroutine RLAV. Array B stores

results from RLAV.

2 Subroutine RLINE is called to perform least squares linear

regression. After the line is executed BO contains the intercept and

B1 the slope of the fitted line. STAT(5) contains the correlation

coefficient. Information can be output to a file or the terminal

screen.

3-5 DO Loop 15 is used to write X and Y data to an array named ARREI

to satisfy the input requirements of subroutine RLAV.

6 The subroutine is called as specified in the instructions. After

the line is executed, B(1) contains the intercept and B(2) contains

the slope of the fitted line.
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KWIC Index

Keyword in Context Index

Sort a real array by absolute value and return the... SVUP 1077 - (111)
Son an integer array by absolute value and return the... SVYBP 1080- (til)
vector having maximum absolute value. ... a single-precision ISAAI 1031 - (Ill)
vector having minimum absolute value. ... a single-precision lSANINi 1031 - (Ill)

Sort a real array by absolute value. SVBN 1076 - (111)
Sort an integer array by absolute value. SIVID 1079- (111)

single... Sum the absolute values of the components of a SASJI4M 1030 - (Il)
... precision scalar to the accumulator in extended precision DQADD 1035 - (111)

.an extended-precision accumulator with a double precision... DQINI 1035- (111)
.using a double-precision accumulator, which is set to the result... SDDOTI 1029- (Ill)
..and the double-precision accumulator, which is set to the result... SDDOTA 1029 - (111)

using a double-precision accumulator. ... a + conjg(x)*y. CZCDOT 1028 - (111)
using a double-precision accumulator. ... product, a + x*y. 8DSDOT 1028 - (111)

... equations using an Adams-Moulton or Gear method IVPAG 640 - (11)
... function using a globally adaptive scheme based on... Q C 569 - (11)

accumulator in... Add a double precision scalar to the DQADD 1035 - (111)
vector. x = x + a.... Add a scalar to each component of a $ADO 1027 - (111)

storage mode. Add two band matrices, both in band AIBRB 1000 - (111)
in band storage... Add two complex band matrices, both ACBCD 1002 - (111)

alpha*xltrans(y) is added ... after the rank-one matrix LUPQR 263 - (I)
after a rank-one matrix is added. ... positive definite matrix LIJPCH 271 - (1)

Compute the Akima cubic spline interpolant. CSAXN 420 - (11)
Integrate a function with algebraic-logarithmic singularities. QDAWS 589 - (11)

Sort a real array by algebraic value and return the... SVRGP 1071 - (1l1)( Sort an integer array by algebraic value and return the... SVIGP 1074 - (111)
Sort a real array by algebraic value SV~rGN 1069 - (111)

Sort an integer array by algebraic value. SVIGN 1073 - (111).
Hessian of an analytic function. ... user-supplied CWHS 927 - (111)

... tensor-product spline approximant using least squares.... BSLS2 541 - (11)
differences. Approximate the gradient using central CDGRD 909 - (Ill)
forward... Approximate the gradient using FDGRD 911 - (Ill)
differences and a... Approximate the Hessian using forward GDIIES 917 - (Ill)
differences and... Approximate the Hessian using forward FDRES 914 - (Ill)
functions in N ... Approximate the Jacobian of M FDJAC 920 - (Ill)

.. weighted Chebyshev approximation to a continuous function... RATCH 557 - (11)
Store a double precision approximation to an extended-precision... DQSTO 1035 - (1l)
... B-spline least squares approximation to given data. BSVLS 536 - (ll),

.a smooth cubic spline approximation to noisy data using... CSSCV 554 - (111

.a smooth cubic spline approximation to noisy data. CSSIOH 550 - (1l)
...and a finite-difference approximation to the Jacobian NEQNF 776 - (I1)
Compute a least squares approximation with user-supplied basis... FNLSQ 527 - (I)
...the least squares spline approximation, and return the B-spline... BSLSQ 532 - (11)

...the elements of an array as specified by a permutation. PERJ4U 1065 - (ll],

Sort a real array by absolute value and return the... SYMP 1077 - (Ill)'
Sort an integer array by absolute value and return the... S'IBP 1080 - (1ll1

Sort a real array by absolute value. SYVRN 1076 - (111
Sort an integer array by absolute value VIBN 1079 - (111)

Sort a real array by algebraic value and return the... BVPGP 1071 - (lilt
Sort an integer array by algebraic value and return the... SVIGP 1074 - (lly;

Sort a real array by algebraic value. SVRGN 1069 - (illy
Sort an integer array by algebraic value SVIGN 1073 - (Ill)

periodic two-dimensional array ... coefficients of a complex TTT2D 748 - (1l)
periodic two-dimensional array ... transform of a complex FM"2B 752 - (til)

IMSL, Inc. MATH/LIBRARY
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GAMS Index-

GAMS Index
'

GAMS Index

The following index lists routines in MATH/LIBRARY based on the tree-structured
GAMS classification scheme (Boisvert, Howe, and Kahaner 1984). Only the leaves
and branches of the CAMS classification scheme that contain MATH/LIBRARY
routines are included here. This index uses GAMS version 1.3, which contains some
additions to and modifications of version 1.2 (Boisvert, Howe, and Kahaner 1985).
An asterisk (*) following a subclass description indicates that this subclass and/or
its substructure have been added or modified in version 1.3. The page number
for the documentation and the purpose of the routine appear alongside the routine
name.

The first level of the full CAMS classification scheme contains the following
major subject areas:

A. Arithmetic. Error Analysis
B. Number Theory
C. Elementary and Special Functions
D. Linear Algebra
E. Interpolation
F. Solution of Nonlinear Equations
G. Optimization 5

H. Differentiation and Integration
I. Differential and Integral Equations
J. Integral Transforms
K. Approximation
L. Statistics. Probability
M. Simulation. Stochastic Modeling
N. Data Handling

0. Symbolic Computation I
P. Computational Geometry
Q. Graphics
R. Service Routines
S. Software Development Tools

There are seven levels in the classification scheme. Classes in the first level are
identified by a capital letter as is given above. Subclasses are identified by alter-
nating letter-and-number combinations. A single letter (a-z) is used within the
odd-numbered levels. A number (1- 26) is used within the even-numbered levels.

References

Boisvert, Ronald F., Sally E. Howe, and David K. Kahaner (1984). Guide to Avail-
able Mathematical Software, U.S. Department of Commerce. National Bureau
of Standards. Center for Applied Mathematics. Washington, D.C.

Boisvert. Ronald F., Sally E. Howe. and David K. Kahaner (1985), GAMS: A frame-
work for the management of scientific software, ACM Transactions on Mathe-
matical Software. 11. 313-355.

IMSL. Inc. MATH/LIBRARY
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Alphabetical Index of Routines

Note: Routines marked with an asterisk (*) are not user callable, but the names
are reserved. See 'Reserved Names' in the Reference Material for additional detais.

A ACBCB 1002-(111) CCBCG 958-(111) CSINT 409- (11)
ACHAR 1088-(111) CCGCB 956-(111) CSITG 434- (11)
ARdACH 1140-(111) CCGCG 946-(111) CSPER 427- (11)
ARERE 1000-CIII) CCOPY 1026-(111) CSROT 1032-(111)

CDGRD 909-(111) CSRtOTM 1033-(111)
B BCLSF 876-(111) CDOTC 1028-(111) CSSCAL 1026-(111)

BCLSJ 882-(111) CDOTU 1028-(111) CSSCV 554- (11)
BCOAH 865-(111) CGBMV 1147-(111)* CSSED 546- (11)
BCODH 859-(111) CGEMV 1147-(111)* CSSMH 55(,- (11)
BCONF 847-(111) CGERC 1147-(111)* CSUB 1027-(111)
BCONG 853-(111) CGERU 1147-(111)* CSVAL 430- (11)
BCPOL 872-(111) CHBCB 972-(111) CSVCAL 1027-(111)
BLINF 988-(111) CHBMV 1147-(111)* CSWAP 1028-(111)
BS2DR 467- (11) CHEMV 1147-(111)* CThMV 1147-(111)*
BS21G 471- (11) CHER 1147-(111)* CTBSV 1147-(111)* V
BS21N 446- (11) CHER2 1147-(111)* CTIME 1096-(111)
BS2VL 465- (11) CHFCG 968-(111) CTRMV 1147-(111)*

BS3DR 477- (11) CHGRD 923-(111) CThSV 1147-(111)*
BS31G 482- (11) CHHES 927-(CIII) CUNIT 1123-(CIII)
BS31N 451- (11) CHJAC 931-(111) CVCAL 1027-(111)
BS3VL 475- (II) CONST 1120-(111) CVTSI 1095-Clil) 1
BSCPP 486- (11) CRBCB 964-(111) CZADD 1147-(111)*
BSDER 459- (11) CRBRB 948-(111) CZCDOT 1028-(111)
BSINT 436- CII) CRBRG 954-CIII) CZDOTA 1029-(111)
BSITG 462- (11) CRGCG 960-C111) CZDOTC 1028-(111)
BSLS2 541- (II) CRGRB 952-(111) CZDOTI 1029-(111)
BSLSQ 532- (II) CRGRG 944-C111) CZDOTJ 1028-(111)
ESNAX 440- (II) CRRCR 962-(111) CZINI 1147-CI111)*
BSOPK 443- (11) CSAKM 420- (11) CZNUL 1147-(111)*
BSVAL 457- (11) CSBRB 970-C111) CZSTO 1147-(111)*
BSVLS 536- (1I) CSCAL 1026-(111) CZUDDT 1028-(111)
BVPFD 660- CII) CSCON 423- (11)
BVPMS 672- CII) CSDEC 412- (11) D DACBCB 1002-C111)

CSDER. 431- (11) DADD 1027- (111)
C CADD 1027-(111) CSET 1026-(111) DARBRB 1000-(III)

CAXPY 1027-(111) CSFRG 966-(111) DASU4 1030-C111)
CCBCB 950-(111) CSHER 417- (11) DAXPY 1027-(111) 0

32



.

SWSW
is-

S

p.

il

33 '5



554 Interpolation and Approxmation

CSSCV/DCSSCV (Single/Double precision)

Purpose: Compute a smooth cubic spline approximation to noisy
data using cross-validation to estimate the smoothing
parameter.

Usage: CALL CSSCV (NDATA, XDATA. FDATA. IEQUAL. BREAK, CSCOEF)

Arguments

NDATA - Number of data points. (Input)
NDATA must be at least 4.

XDATA - Array of length NDATA containing the data point
abscissas. (Input)
XDATA must be distinct.

FDATA - Array of length NDATA containing the data point
ordinates. (Input)

IEQUAL - A flag alerting the subroutine that the data is
equally spaced. (Input)
If NDATA is small (less than about 20) then IQUEAL should
be set to 2.
If IEQUAL is I then equal spacing is assumed and the
algorithm is more efficient; otherwise, unequal spacing
for the XDATA vector is assumed.

BREAK - Array of length NDATA containing the breakpoints
for the piecewise cubic representation. (Output)

CSCOEF - Matrix of size 4 by NDATA containing the local
coefficients of the cubic pieces. (Output)

Remark

Automatic workspace usage is
CSSCV 8*NDATA units if IEQUAL is 1, or

7*NDATA + 3*NDATA**2 units otherwise, or
DCSSCV 15*NDATA units if IEQUAL is 1, or

13*NDATA + 6*NDATA**2 units otherwise.
Workspace may be explicitly provided, if desired, by use of

C2SCV/DC2SCV. The reference is
CALL C2SCV (NDATA, XDATA. FDATA, IEQUAL. BREAK, CSCOEF,

WK, SDWK. IPVT)
The additional arguments are as follows:
WK - Work array of length 6*NDATA if IEQUAL is 1 or

5*NDATA+3*NDATA**2 otherwise.

SDWK - Work array of length NDATA to hold the smoothed data.
IPVT - Work array of length NDATA.

CSSCV/DCSSCV IMSL, Inc. MATH/LIBRARYN
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3.9 Cubic Spline Smoothing 555

Algorithm

CSSCV is designed to produce a C2 cubic spline approximation to a data set in
which the function values are noisy. This spline is called a smoothing spline. It is
a natural cubic spline with knots at all the data abscissas z = XDATA but it does
not interpolate the data (xi, fi). The smoothing spline S, is the unique C2 function
which minimizes

f b S;(z) 2 dx

subject to the constraint
N

IS" (z,) - 12 < ,
i= 1

where a is the smoothing parameter and N = NDATA. The reader should consult
Reinsch (1967) for more information concerning smoothing splines.

The IMSL subroutine CSSMH solves the above problem when the user provides
the smoothing parameter a. This routine attempts to find the 'optimal' smoothing
parameter using the statistical technique known as cross-validation. This means
that (in a very rough sense) one chooses the value of a so that the smoothing spline
(S,) best approximates the value of the data at .i, if it is computed using all the
data ezcept the i-th; this is true for all i = 1 .... , N. For more information on this
topic we refer the reader to Craven and Wahba (1979).

f This routine has a switch. IEQUAL, that allows the user to take advantage of the
fact that the entries in XDATA are equally spaced. This switch, when it is appropriate
to use, can result in more efficient execution.

Example

In this example function values are computed and are contaminated by adding a
small 'random' amount. CSSCV is used to try to reproduce the original, uncontami-
nated data.

INTEGER NDATA
PARAMETER (NDATAf300)

C
INTEGER I. IEQUAL. NOUT
REAL BREAK(NDATA), CSCOEF(4.NDATA). CSVAL. ERROR, F.

& FDATA(NDATA), FLOAT. FVAL. RNUNF. SVAL. X,
& XDATA (NDATA). XT
INTRINSIC FLOAT
EXTERNAL CSSCV, CSVAL. RNSET, RNUNF, UMACH

c
F(X) = 1.O/(.1+(3.0C(X-1.0))*.4)

* C
CALL UMACH (2, NOUT)

C Set up a grid
DO 10 1-1, NDATA

XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1))

IMSL, Inc. MATH/LIBRARY CSSCV/DCSSCV
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556 Interpolation and Approximation

FDATA(I) a F(XDATA(I))
10 CONTINUE

C Introduce noise on [-.5,5]
C Contaminate the data

CALL INSET (1234579)
DO 20 1-1. NDATA

FDATACI) a FDATA(I) * 2.O*RNUNF() - 1.0
20 CONTINUE

C
C Set IEQUAL-1 for equally spaced data

IEQUAL a I
C Smooth data

CALL CSSCV (NDATA. XDATA. FDATA. IEQUAL. BREAK. CSCOEF)
c Print results

WRITE CNOUT. 9999M
DO 30 Int. 10

XT - 90.0*(FLOAT(I-1)/FLOAT(NDATA-1))

SVAL a CSVAL(XT.NDATA- 1,BREAKCSCOEF)

FVAL - F(XT)
ERROR - SVAL - FVAL
WRITE (NOUT,'(4F15.4)') XT. FVAL, SVAL. ERROR

30 CONTINUE

99999 FORMAT (12X. 'X'. 9X. 'Function'. 7X. 'Smoothed'. 1OX.
& 'Error')
END

Output

X Function Smoothed Error
.0000 .0123 .2552 .2429

.3010 .0514 .1062 .0547

.6020 .4690 .3121 -.1569

.9030 9.3311 8.9495 -.3817
1.2040 4.1611 4 6834 .5223

1.5050 .1863 .3833 .1970
1.8060 .0292 .1161 .0869

2.1070 .0082 .0654 .0571
2.4080 .0031 .0403 .0372
2.7090 .0014 -.2158 -.2172

References

Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline func-
tions, Numerische Mathematik, 31, 377-403.

Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische Mathe-
matik, 10, 177-183.

CSSCV/DCSSCV IMSL, Inc. MATH/LIBRARY
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434 Interpolation and Approximation

CSITG /DCSITG (Single/Double precision)

Purpose: Evaluate the integral of a cubic splin.

Usage: CSITG(A. B. NINTV. BREAK. CSCOEF)

Arguments

A - Lower limit of integration. (Input)
B - Upper limit of integration. (Input)
NINTY - Number of polynomial pieces. (Input)
BREAK - Array of length NINTV.1 containing the breakpoints

for the piecewise cubic representation. (Input)
BREAK must be strictly increasing.

CSCOEF - Matrix of size 4 by NINTV+1 containing the local
coefficients of the cubic pieces. (]pput)

CSITG - Value of the integral of the spline from A to B.
(Output)

Algorithm

CSITG evaluates the integral of a cubic spline over an interval. It is a special case of
the routine PPITG, which evaluates the integral of a piecewise polynomial. (A cubic
spline is a piecewise polynomial of order 4.)

Example

This example computes a cubic spline interpolant to the function x2 using CSINT
and evaluates its integral over the intervals 10.. .5] and 10.. 2.]. Since CSINT uses the
not-a-knot condition, the interpolant reproduces A2 hence the integral values are
1/24 and 8/3, respectively.

INTEGER NDATA
PARAMETER (NDATA-1O)

C
INTEGER I, NINTV, NOUT
REAL A. B. DREAK(NDATA). CSCOEF(4,NDATA). CSITG. ERROR,
& EXACT. F. FDATA(NDATA), FI. FLOAT. VALUE. X,

& XDATA (NDATA)
INTRINSIC FLOAT
EXTERNAL CSINT. CSITG. UMACH

C Define function and integral

FI(X - X*XX/.

C F()-XXX30Set up a grid
DO 10 Ial. NDATA

XDATA(I) -FLOAT(1-1)/FLATCNDATA-1)
FDATA(I) -F(XDATA(I))

CSITG/DCSITG IMSL, Inc MATH/LIBRARY
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3.2 Cubic Spline Evaluation and Integration 435

10 CONTINUE
C Compute cubic spline interpolant

CALL CSINT (NDATA. XDATA. FDATA. BREAK. CSCOEF)
C Compute the integral of F over
C [0.0,0.5]

A a 0.0

B -0.5
NINTV a NDATA - I
VALUE • CSITG(A.B,NINTV.BREAK.CSCOEF)
EXACT a FI(B) - FI(A)
ERROR a EXACT - VALUE

C Get output unit number

CALL UMACH (2. NOUT)
C Print the result

WRITE (NOUT.99Mgg) A. B. VALUE. EXACT. ERROR
C Compute the integral of F over
C [0.0.2.0]

A -0.0
B =2.0
VALUE - CSITG(AB.NINTVBREAK.CSCOEF)
EXACT = FI(B) - FI(A)

ERROR - EXACT - VALUE
C Print the result

WRITE (NOUT.99999) A, B, VALUE, EXACT, ERROR
99999 FORMAT C' On the closed interval ('. F3.1, '.', F3.1.

') we have :', /. IX. 'Computed Integral ', F1O.5. /,
& IX. 'Exact Integral = '. F1O.5. /, IX. 'Error
& . ' • ', F10.6, I, /)

C
END

Output

On the closed interval ( .0. .5) we have
Computed Integral a .04167
Exact Integral a .04167
Error a .000000

On the closed interval ( .0.2.0) we have
Computed Integral - 2.66669
Exact Integral a 2.66667
Error a -. 000023

IMSL, Inc. MATH/LIBRARY CSITG/DCSITG
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CSVAL/DCSVAL (Single/Double precision)

Purpose: Evaluate a cubic spline.

Usage: CSVAL(X. NINTV, BREAK. CSCOEF)

Arguments

X - Point at which the spline is to be evaluated.
(Input)

NINTV - Number of polynomial pieces. (Input)
BREAK - Array of length NINTV+1 containing the breakpoints

for the piecewise cubic representation. (Input)
BREAK must be strictly increasing.

CSCOEF - Matrix of size 4 by NINTV*1 containing the local
coefficients of the cubic pieces. (Input)

CSVAL - Value of the polynomial at X. (Output)

Algorithm

CSVAL evaluates a cubic spline at a given point. It is a special case of the routine
PPDER, which evaluates the derivative of a piecewise polynomial. (The value of
a piecewise polynomial is its zero-th derivative and a cubic spline is a piecewise
polynomial of order 4.) PPDER is based on the routine PPVALU in de Boor (1978,
page 89).

Example

For an example of the use of CSVAL, see IMSL routine CSINT.

Reference

de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag, New York.
,P*

I(
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550 Interpolation and Approximation

CSSMH/DCS SMH (Single/Double precision)

purpose: Compute a smooth cubic spline approximation to
noisy data.

Usage: CALL CSSNH (NDATA. XDATA. FDATA, WEIGHT. SMPAR. BREAK.
CSCOEF)

Arguments

NDATA - Number of data points. (Input)
NDATA must be at least 2.

XDATA - Array of length ?JDATA containing the data point
abscissas. ( Input)
XDATA must be distinct.

FDATA - Array of length NDATA containing the data point
ordinates. (Input)

WEIGHT - Array of length NDATA containing estimates of the
standard deviations of FDATA. (Input)
All elements of WEIGHT must be positive.

SMPAR - A nonnegative number which controls the smoothing.
(Input)
The spline function S returned is such that
the sum from I=1 to NDATA of
C(S(XDATA(I))-FDATA(I))/WEIGHTCI) )**2

is less than or equal to SPAR. It is recommended that
SMPAR lie in the confidence interval of this sum, i.e..
NDATA-SQRT(2*NDATA) .LE. SJ4PAR .LE. NDATA.SQRT(2*NDATA).

BREAK - Array of length NDATA containing the breakpoints
for the piecewise cubic representation. (Output)

CSCOEF - Matrix of size 4 by NDATA containing the local
coefficients of the cubic pieces. (Output)

Remarks

1. Automatic workspace usage is
CSSMH 9*NDATAM5 units, or
DCSSMH 17*NDATA+1O units.

Workspace may be explicitly provided, if desired, by use of
C2SMH/DC2SNH. The reference is

CALL C2SMH (NDATA. XDATA. FDATA, WEIGHT. SMPAR, BREAK.
CSCOEF. WK. IWK)

The additional arguments are as follows:
WK - Work array of length 8*NDATA,5.
IWI( - Work array of length NDATA.

CSSMH/DCSSMH IMSL, Inc. MATH/LIBRARY
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3.9 Cubic Spline Smoothing 551

2. Informational error
Type Code
3 1 The maximum number of iterations has been reached. The

best approximation is returned.

3. The cubic spline can be evaluated using CSVAL; its derivative can
be evaluated using CSDER.

Algorithm

CSSMH is designed to produce a C 2 cubic spline approximation to a data set in
which the function values are noisy. This spline is called a Smoothing spline. It is
a natural cubic spline with knots at all the data abscissas x = XDATA, but it does
not interpolate the data (xi, f,). The smoothing spline S is the unique C2 function
which minimizes b

f
b S"(z)

2 dx

subject to the constraint

t=1

where w = WEIGHT, a = SMPAR is the smoothing parameter, and N = NDATA.
Recommended values for a depend on the weights w. If an estimate for the

standard deviation of the error in the value f, is available, then w, should be set
to this value and the smoothing parameter a should be chosen in the confidence
interval corresponding to the left side of the above inequality. That is,

N- V/2 < a < N + V2_"N.

CSSMH is based on an algorithm of Reinsch (1967). This algorithm is also dis-
cussed in de Boor (1978, pages 235-243).

Example

In this example, function values are contaminated by adding a small 'random'
amount to the correct values. CSSM4H is used to approximate the original, uncontam-
inated data.

INTEGER NDATA
PARAMETER (NDATA-300)

C
INTEGER I. NOUT
REAL DREAK(NDATA). CSCOEF(4.NDATA). CSVAL. ERROR, F.
kFDATA(NDATA). FLOAT, FVAL. RNUNF, SDEV. SMPAR. SQRT.
a SYAL. WEIGHT(NDATA), X. XDATA(NDATA). XT
INTRINSIC FLOAT. SQRT
EXTERNlAL CSSMH. CSVAL, RNSET. RNUNF. SSET, IMACH

IMSL. Inc. MATH/LIBRARY CSSMH/DCSSMH
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552 Interpolation and Approximation

C
F(X) - 1.0/C.1,C3.0*CX-1.0))**4)

C Set up a grid
Do 10 1-1. NDATA

XDATA(I) a 3.0*(FLOAT(I1)/FLOATCNDATA-1))
FDATA(I) a F(XDATA(I))

C 1COTNEsot the random number seed

CALL RNSET ( 1234579)

C Contaminate the data

DO 20 1-1, NDATA

FDATA(I) - FDATA(I) + 2.0*RNUNP() - 1.0

20 CONTINUE

C set the WEIGHT vector
SDEV a 1.0/SQRT(3.0)
CALL SSET CNDATA. SDEV. WEIGHT. 1)

SMPAR -NDATA

C smooth the data

CALL CSSI4H (NDATA, XDATA. FDATA, WEIGHT. SNPAR. BREAK, CSCOEF)

C Get output unit number

CALL UMACH (2, NOUT)

C Write heading

WRITE (NOUT.99999)

C Print 10 values of the function.

DO 30 1-1. 10

XT - 90.O*CFLOATCI-1)/FLOATCNDATA-1))

C Evaluate the spline

SVAL - CSVAL(XT.NDATA-1.BREAK.CSCOEF)
FYAL - F(XT)
ERROR a SVAL - FVAL
WRITE (NOUT,'(4F15.4)') XT. FYAL. SYAL, ERROR

30 CONTINUE
C
99999 FORMAT (12X. 'X'. 9X. 'Function'. 7X, 'Smoothed'. 1OX,

& 'Error')
END

Output

X Function Smoothed Error

.0000 .0123 .1119 .0995

.3010 .0514 .0646 .0131

.6020 .4690 .2972 -. 1718

.9030 9.3311 8.7022 - .6290

1.2040 4.1611 4.7888 .6277

1.5050 .1863 .2717 .0855

1.8080 .0292 .1408 .1116

2.1070 .0082 .0826 .0743

2.4080 .0031 .0076 .0044

CSSMH/DCSSMH IMSL, Inc. MATH/LIBRARY
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84 Regression

RLINE/DRLINE (Single/Double precision) 0

Purpose: Fit a line to a set of data points using least squares.

Usage: CALL RLINE (NOBS. XDATA. YDATA. BO. B1. STAT)

Arguments

NOBS - Number of observations. (Input)
XDATA - Vector of length NOBS containing the x values. (Input)
YDATA - Vector of length NOBS containing the y values. (Input)
BO - Estimated intercept of the fitted line. (Output)
B - Estimated slope of the fitted line. (Output)
STAT - Vector of length 12 containing the statistics described

below. (Output)
I STAT(I)
I Mean of XDATA
2 Mean of YDATA
3 Sample variance of XDATA
4 Sample variance of YDATA
5 Correlation
6 Estimated standard error of BO
7 Estimated standard error of B
8 Degrees of freedom for regression
9 Sum of squares for regression

10 Degrees of freedom for error
11 Sum of squares for error
12 Number of (x,y) points containing NaN

(not a number) as either the x or y value

Remark

Informational error
Type Code
4 1 Each (xy) point contains NaN (not a number). There

are no valid data.

Keyword: Simple linear regression

Algorithm

Subroutine RLINE fits a line to a set of (z, y) data points using the method of least
squares. Draper and Smith (1981, pages 1-69) discuss the method. The fitted model
is

=0 + Ixi,

RLINE/DRLINE IMSL, Inc. STAT/LIBRARY
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2.1 Simple Linear Regression 85

where 13o (stored in BO) is the estimated intercept and j3 (stored in Bl) is the I1
estimated slope. In addition to the fit, RLINE produces some summary statistics.

including the means, sample variances, correlation, and the error (residual) sum of
squares. The estimated standard errors of #0 and fl are computed under the simple
linear regression model. The errors in the model are assumed to be uncorrelated
and with constant variance.

If the z values are all equal, the model is degenerate. In this case, RLINE sets /h
to zero and o to the mean of the y values.

Example

This example fits a line to a set of data discussed by Draper and Smith (1981, Table
1.1, pages 9-33). The response y is the amount of steam used per month (in pounds)
and the independent variable z is the average atmospheric temperature (in degrees
Fahrenheit).

C SPECIFICATIONS FOR PARAMETERS
INTEGER NOBS
PARAMETER (NOBS-25)

C
INTEGER NOUT
REAL BO. B1, STAT(12), XDATA(NOBS), YDATA(NOBS)
CHARACTER CLABEL(13)*15. RLAEL(1)*4
EXTERNAL RLINE, UMACH, WRRRL

k. C
DATA XDATA/35.3, 29.7. 30.8. 58.8. 61.4. 71.3. 74.4, 76.7. 70.7.
& 57.5. 46.4. 28.9. 28.1. 39.1. 46.8. 48.5. 59.3. 70.0. 70.0.
& 74.5. 72.1, 58.1, 44.6. 33.4, 28.6/
DATA YDATA/10.98. 11.13. 12.51, 8.4, 9.27. 8.73, 6.36, 8.5.
k 7.82, 9.14, 8.24, 12.19, 11.88, 9.57. 10.94, 9.58. 10.09,
k 8.11. 6.83. 8.88. 7.68. 8.47. 8.86. 10.36. 11.08/
DATA RLABEL/NONE'/, CLABEL/' '. 'Mean of X', 'Mean of Y'.
k 'Variance X'. 'Variance Y'. 'Corr.'.

&'Std. Err. BO', 'Std. Err. Bl'. 'DF Reg.'. 5'

& 'SS Reg.', 'DF Error'. 'SS Error'. 'Pts. with NAN'/
C

CALL RLINE (NOBS, XDATA, YDATA, BO. B1, STAT)
C

CALL UKACH (2. NOUT)
WRITE (NOUT.99999) BO. BI

99999 FORMAT (' BO * ', F7.2, ' El u ', F9.5)
CALL WRRRL ('%/STAT', 1. 12. STAT, 1, 0. '(12W10.4)'. RLABEL.
&CLABEL)

C J
END

IMSL, Inc. STAT/LIBRARY RLINE/DRLINE
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86 Regression

Output

BO * 13.62 B1 - -. 07983

STAT
Mean of X Mean of Y Variance X Variance Y Corr. Std. Err. BO

52.6 9.424 298.1 2.659 -.8452 .5815

Std. Err. B1 DF Reg. SS Reg. DF Error SS Error Pts. with NaN

.01052 1 45.59 23 18.22 0

Reference

Draper, N. R., and H. Smith (1981), Applied Regression Analysis, second edition.

John Wiley & Sons, New York.

RLINE/DRZLJNE IMSL, Inc. STAT/LIBRARY
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248 Regression

RLAV/DRLAV (Single/Double precision)

Purpose: Fit a multiple linear regression model using the least
absolute values criterion.

Usage: CALL RLAV (NOBS. NCOL, X. LDX, INTCEP, IIND. INDIND.
IRSP. B, IRANK, SAE, ITER. NRMISS)

Arguments

NOBS - Number of observations. (Input)
NCOL - Number of columns in X. (Input)
X - NOBS by NCOL matrix containing the data. (Input)
LDX - Leading dimension of X exactly as specified in the

dimension statement in the calling program. (Input)
INTCEP - Intercept option. (Input)

INTCEP Action
0 An intercept is not in the model.
I An intercept is in the model.

IIND - Independent variable option. (Input)
The absolute value of IIND is the number of independent
(explanatory) variables. The sign of IIND specifies the
following options:
IIND Meaning
.LT. 0 The data for the -IIND independent variables are

given in the first -IIND columns of X.
.GT. 0 The data for the IIND independent variables are

in the columns of X whose column numbers are
given by the elements of INDIND.

.EQ. 0 There are no independent variables.
The regressors are the constant regressor (if INTCEP = 1)
and the independent variables.

INDIND - Index vector of length IIND containing the column numbers
of X that are the independent (explanatory) variables.
(Input, if IIND is positive)
If IIND is negative, INDIND is not referenced and can be
a vector of length one.

IRSP - Column number IRSP of X contains the data for the
response (dependent) variable. (Input)

B - Vector of length INTCEP + IABS(IIND) containing a LAV
solution for the regression coefficients. (Output)
If INTCEP - 1. B(1) contains the intercept estimate.
B(INTCEP+I) contains the coefficient estimate for the
I-th independent variable.

IRANK - Rank of the matrix of regressors. (Output)

RLAV/DRLAV IMSL, Inc. STAT/LIBRARY
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2.6 Alternatives to Least Squares 249

If IRANK is less than INTCEP + IABS(IIND). linear

dependence of the regressors was declared.
SAE - Sum of the absolute values of the errors. (Output)
ITER - Number of iterations performed. (Output)
NMJISS - Number of rows of data containing NaN (not a number)

for the dependent or independent variables. (Output)
If a row of data contains NaN for any of these variables.
that row is excluded from the computations.

Remarks

1. Automatic workspace usage is
RLAV NOBS*(IABS(IIND)+5) 2*IABS(IIND)*NOBS4, or
DRLAV 2*NOBS*(IABS(IIND)+5)+4*IABS(IIND)+NOBS8

Workspace may be explicitly provided, if desired, by use of
R2AV/DR2AV. The reference is

CALL R2AV (NOBS. NCOL, X, LDX, INTCEP, IIND, INDIND,
IRSP, B, IRANK. SAE. ITER, NRAISS. IWK. WK)

The additional arguments are as follows:
IWK - Work vector of length NOBS
WK - Work vector of length NOBS*(IABS(IIND) 5)+2*IABS(IIND)+4

2. Informational error
Type Code
3 1 The solution may not be unique.

Keywords: Li criterion; MSAE; LSAE; MAD; LAV

Algorithm

RLAV computes estimates of the regression coefficients in a multiple linear regression
model. The criterion satisfied is the minimization of the sum of the absolute values
of the deviations of the observed response y, from the fitted response Pi for a set on
n observations. Under this criterion, known as the L, or LAV (least absolute value)
criterion, the regression coefficient estimates minimize M, Iyi - W,.

The estimation problem can be posed as a linear programming problem. The
special nature of the problem, however, allows for considerable gains in efficiency

by the modification of the usual simplex algorithm for linear programming. These
modifications are described in detail by Barrodale and Roberts (1973).

In many cases, the algorithm can be made faster by computing a least squares
solution prior to the invocation of RLAV. This is particularly useful when a least
squares solution has already been computed. The procedure is as follows:

1. Fit the model using least squares and compute the residuals from this fit.

IMSL, Inc. STAT/LIBRARY RLAV/DRLAV
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250 Regresion

2. Fit the residuals from step 1 on the regressor variables in the model using
RLAV.

3. Add the two estimated regression coefficient vectors from steps 1 and 2. The
result is an L, solution.

When multiple solutions exist for a given problem, subroutine RLAV may yield
different estimates of the regression coefficients on different computers; however,
the sum of the absolute values of the residuals should be the same (within rounding
differences). The informational error indicating nonunique solutions may result from
rounding accumulation. Conversely, because of rounding the error may fail to result,
even when the problem does have multiple solutions.

Example A"

A straight line fit to a data set is computed under the LAV criterion.

C SPECIFICATIONS FOR PARAMETERS
INTEGER LDX. NCOEF. NCOL, NOBS
PARAMETER (NCOEF=2, NCOL=2. NOBSu8. LDX=NOBS)

C
INTEGER IIND. INDIND(1), INTCEP. IRANK, IRSP. ITER, NOUT,
At NRMISS
REAL B(NCOEF). SAE. X(LDXNCOL)
CHARACTER CLABEEL(1)*4, RLABEL(1)*4
EXTERNAL RLAV, UMACH. WRRRL

C L
DATA (X(1.J).J=1,NCOL) /1.0. 1.0/
DATA (X(2,J).Ji1.NCOL) /4.0. 5.0/
DATA (X(3,J).J=1.NCOL) /2.0. 0.0/
DATA (X(4,J),J=1.NCOL) /2.0, 2.0/
DATA (X(5.J).J-1iNCOL) /3.0, 1.5/
DATA (X(6,J).J=1.NCOL) /3.0, 2.5/
DATA (X(7.J),J=1NCOL) /4.0. 2.0/
DATA (X(8.J).J=1.NCOL) /5.0. 3.0/

C
INTCEP a I
IIND a -1

IRSP - 2
CALL RLAV (NOBS. NCOL, X, LDX. INTCEP. IIND. INDIND. IRSP, B.

&t IRANK. SAE, ITER, NRMISS) '.I

C
CALL UMACH (2. NOUT)
RLABEL() = 'B -
CLABEL() a 'NONE'
CALL WRRRL (' '. 1, NCOEF, B. 1. 0. '(F6.2)'. RLABEL, CLABEL)
WRITE (NOUT,*) 'IRANK ', IRANK V
WRITE (NOUT.*) 'SAE - '. SAE
WRITE (NOUT.*) 'ITER - '. ITER
WRITE (NOUT.,) 'NRMISS - ', NRMISS

RLAV/DRLAV IMSL, Inc. STAT/LIBRARY

48

" '.'=-.d', .''.
' P a' &" ' -"# , . • . - -" + . . " # r 4 " - .- ,4 . +



2.6 Alternatives to Least Squares 251

END

Output

B= .50 .50
IRANK - 2
SAE 6.
ITER -2
NRMISS - 0

References

Barrodale, I., and F. D. K. Roberts (1973), An improved algorithm for discrete L,
approximation, SIAM Journal on Numerical Analysis, 10, 839-848.

Barrodale, I., and F. D. K. Roberts (1974), Solution of an overdetermined system
of equations in the 11 norm, Communications of he ACM, 17, 319-320.
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